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Computers are machines; but they are machines that are different in spirit, and in 
their own technical logic, from any other machine we have known before of after 
the industrial revolution. Computers are not mechanical machines--and they are 
certainly not organic systems, either; they are something else and new and un-
precedented. If in doubt, let's just look at what computers do--at the way they 
work: a fructibus eorum cognoscetis eos. If we use computers to make things--to 
produce physical stuff--computers make things more or less the way pre-indu-
strial artisans did; not the way any modern engineer would. Gilles Deleuze would 
have loved that, had he lived to see it. And if we use computers to think, or so-
mething akin to that, computers think more or less the way a child could, not the 
way any modern scientist would. But computers think like children that never 
grow up, as they do not have to: thanks to their immense memory and proces-
sing power, their childish way of thinking is so effective that computers never 
need to grow out of it.
Let me tackle the two topics--making, and thinking-- separately, as these are 
two different stories. First, physical production. The technical logic of mecha-
nical mass-production is well-known: starting with the archetypal technology 
of modernity, Gutenberg's press, most technologies of mechanical reproduction 
typically used casts, molds, dies, or stamps to replicate identical copies. Molds or 
casts cost money and once they are made, it makes sense to use them many ti-
mes over and for as long as possible, to amortize their cost by spreading it over 
many copies. This is the logic of mass-production, which achieves economies of 
scale through standardization, and the reproduction of identical copies: its iron 
logic is well-known, too: the more identical copies we make, the cheaper each 
copy will be.

But digital fabrication, as we know it today, does not use casts or molds; 
when digitally made, each piece is individually carved or milled out of a block 
of pre-existing material, or printed out of nothing, almost, by today's 3D prin-
ting tools. As there are no mechanical matrixes to begin with, there is no need to 
amortize their cost, hence there is no economic incentive to make more copies of 
the same item: likewise, when needed, each piece can be different from all others, 
at the same cost per piece--just like in traditional artisan production. The curve 
of marginal costs, which is asymptotic in all matrix-based mechanical making, is 
theoretically flat in most digital fabrication processes. In digital making, making 
more of the same will not make anything cheaper. As there are no economies 
of scale in digital fabrication, digital making is in no need to ever "scale up"; for 
the first time since the end of the Middle Ages, bigger today no longer means 
cheaper: bigger factories and bigger markets no longer mean cheaper goods. 
This new technical logic, which digital designers have been advocating since the 
1990s, has a name: digital mass-customization, or non-standard seriality; and 
it means, literally: the serial reproduction of non-identical parts; the mass pro-
duction of variations at no extra cost. 

In more recent times the same logic has been spreading from production 
to commerce, and from commerce to finance, with similar results. Extrapolating 
from this technical logic, some have even imagined a future "zero marginal cost 
society," where some, or even many products and services will cost nothing; and, 
an even longer shot, a society where all human labor has been eliminated--a 
society of universal plenty where all laws of modern economics, both socialist 
and capitalist, will simply cease to exist. 

But, leaving that matter stand for the time being, let's move to my 
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second topic: computers as machines for thinking (as opposed to machines for 
making). As we all know, for the last 3 or 4 years or so everyone has been talking 
about Artificial Intelligence, and this may be surprising for the older among us, 
as the term "Artificial Intelligence" itself (or AI) is not new, and we may remem-
ber the time when it was already very popular, in the 1960s and early 1970s. 
Indeed, the term was introduced by computers scientists in 1956 as an alter-
native to Norbert Wiener's cybernetics, as Wiener's cybernetics had a strong 
emphasis on neurophysiology that many computer scientists back then found 
suspicious, or worse. Remarkably, in spite of colossal investments, particularly 
by the military in the age of the Cold War, both Wiener's cybernetics, and early 
Artificial Intelligence never produced any usable results. When it became evi-
dent that even the best mainframe computers of the time could not do much 
more than high school arithmetic, military funding dried up, and most AI 
projects were abandoned. This was the beginning of what computer scientists 
to this day call "the long winter of Artificial Intelligence." In short, the history of 
Artificial Intelligence is the history of a fiasco. Whereas what many call AI today 
very often seems to works: nobody knows for sure what AI stands for today, 
but most commercial computers already carry out increasingly intelligent tasks, 
and today's computers, unlike those of the 60s, easily win at games of checkers, 
chess, and Go, against the best human champions. Today's computers can even, 
almost, drive cars. Why then should we call all this AI, if AI is a technology that 
was already tried, and that famously failed in the past? 

One reason may simply be that the use of this vintage term today may 
be a misnomer--i.e., wrong, and likely misleading. Another reasons is that many 
of the AI tools and strategies that work today are not very different from those 
that did not work in the 1950s and 1960s; but today's computers are so much 
more powerful than those of yesterday that computer programs that could be 
conceived, but could not work back then, do work right now, due to mere tech-
nical progress. And this, I am told by experts, is indeed part of the story. But 
another part of the story is that the extraordinary power of today's computers, 
when compared to those of 50 years ago, has brought about an actual metho-
dological shift, which goes beyond mere quantitative progress. What computer 
scientists today call Brute Force AI, or Dataism, or Big Data Computation, is not 
more of the same old game; it is an entirely different game, a game with a dif-
ferent spirit, and a different logic: and this new game is nurturing what appe-
ars to be an entirely new scientific method--or perhaps we should call it, a new 
post-scientific method; or even a new kind of science. 

Let me try to explain that in brief. Vintage AI aimed at the imitation 
of well-established human processes: one school of AI favored the imitation of 
the deductive methods of the mathematical sciences, based on some formalized 
rules for any given task or discipline (for example, the rules of grammar for a pro-
gram meant to translate between languages). To the contrary, another school of 
thought favored inductive processes, based on iterative trial and error and on 
various optimizing strategies meant to reduce the number of trials needed for 
the extrapolation of more general statements. The first of these two methods 
imitated human science; the second, human learning; both followed establi-
shed patterns of Western science (induction, formalization, deduction, ratio-
nalism or empiricism); and by the way neither imitated the physiology of the 
human brain, in spite of some fancy terminologies then adopted and still in use 
("Neural Networks", for example). Most of these strategies were invented in the 
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50s, developed in the 60s--and abandoned in the 70s. The former of these two 
schools of computational thought favored so-called knowledge-based systems, 
aka expert systems, or rule-based systems; the latter is often called, by contrast, 
the connectionist school. 

Fast forward to today. One generation after the invention of the PC and 
the rise of the Internet (which by the way no cybernetician nor AI guru of the 
1950s, 60s, and 70s ever anticipated), the novelty of today's Big Data computa-
tion (or Dataism) is that, for the first time ever in the history of humankind, there 
seems to be no practical limit to the amount of data we can capture, store, and 
process. This is an unprecedented, almost anthropological change in the history 
of the human condition. Since the invention of the alphabet till a few years ago, 
we always needed more data than we had; today, for the first time ever, we seem 
to always have more data than we need. Humankind has shifted, almost overni-
ght, from ancestral data penury to a new and untested state of data affluence. 
One of the first techno-scientific consequences of this truly Copernican uphea-
val is that many traditional cultural technologies and social practices predicated 
on our supposedly permanent shortage of data are now, all of a sudden, unne-
cessary and obsolete. 

This is a subject I discussed at length elsewhere, but to make a long 
story short, big data computation today no longer needs to replicate the small 
data logic of either human science or human learning. Modern science used to 
compress the infinite variability and complexity of the world into short and 
memorable mathematical formulas--small formulas that were made to mea-
sure for human thinking; formulas we can comprehend within our mind; formula 
we can work with. The human mind needs small formulas, instead of big data, 
because the human brain cannot easily work with big numbers: the human brain 
was never hard-wired for big data. But today's electronic computers are. What 
today we call big data simply means data that are too big for us; but which com-
puters can work with just fine. Not surprisingly, this is where human science, and 
Big Data computation, start to follow two different paths, or methods, and to 
function in two very different ways. 

Scientific induction, or inference, is the capacity we have to construe 
general statements that go beyond our recorded experience. We need this capa-
city because our recorded experience is limited. But: let's assume, per absur-
dum, and to the limit, that we can now build a machine with almost unlimited, 
searchable data storage. Such a machine would not need to construe general 
statements that go beyond its recorded experience, because its recorded expe-
rience could be almost infinite. Consequently, this machine would have perfect 
predictive skills without any need for mathematical formulas, or laws of causa-
tion--in fact, without any need for what we call science. Such machine could pre-
dict the future by simply retrieving the past. The search for a precedent could 
then replace all predictive science; a Universal Google Machine would replace all 
science, past or future. The motto of this new science would be: Don't calculate; 
Search. Or, to be more precise: Don't calculate; Search for a precedent, because 
whatever has happened before, if it has been recorded, if it can be retrieved, will 
simply happen again, whenever the same conditions reoccur. 

Of course here one would need a lot of small print to define what "the 
same conditions" means--which would bring us back to some core tropes and 
problems of the modern scientific method; and indeed many traditional scienti-
fic tricks and trades and shortcuts of all kinds still apply at all steps of the new 
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computational science of Big Data. Conceptually, however, and ideally, this is 
this is the main difference between yesterday's AI and today's; the main rea-
son why AI works today and in the past it didn't. AI today does not even try 
to imitate the abstractions and generalizations of human thinking; instead, AI 
today solves problems by storing a huge amount of precedents, in the raw--as 
they come; as found; and then searching this immense data-base--looking for 
the right precedent--whenever needed. No human could work this way, because 
it would take forever, which is why we mostly don't work this way. But compu-
ters do. This is why we humans invented a scientific method, based on compa-
rison selection formalization generalization and abstraction, based on rules for-
mulas axioms and laws of causation; which post-human computers don't need, 
and don't use. 

This is how computers today can translate between languages--not by 
applying the rules of grammar, as Noam Chomsky thought long ago, but looking 
for the record of pre-existing translations validated by use. This is how compu-
ters win chess matches: not by applying the rules of the game, but by searching 
for a suitable precedent in a universal archive of all games already played. Indeed, 
in this instance, as in structural engineering, computers can do more than that: 
they can simulate all kinds of fake precedents on demand, playing against them-
selves; and these simulated precedents will be just as good, for predictive pur-
poses, as real historical ones. Among so many reliable precedents, either real or 
simulated, it does not take any degree of intelligence, either natural or artificial, 
to find a good solution for any given problem. This is how computers today win 
a game of chess; and this is how in engineering we can already use post-human, 
Big Data computation to solve problems we could not solve in any other way. 

Let me show that, to conclude, with a real-life example, the 2012 ICD/
ITKE Research Pavilion, built in Stuttgart, Germany, by Achim Menges's team a 
few years ago. How do you think this structure was calculated--using the kind 
of science that all engineers of my generation studied at school? No; that would 
have been impossible; because that pavilion was made of millions of different 
filaments; and calculating each one of them in the traditional way would take 
forever. Instead, the authors of this building started with a random, perfectly 
arbitrary geometrical and material layout, in this instance inspired by biological 
models; then calculated the structural behavior of this first model using com-
putational FEA. FEA is a design method that subdivides a continuous structure 
into a huge amount of discrete particles, then calculates the equilibrium and 
interactions among all of these very small parts. FEA a is conceptually simple 
method, but it results in so many calculations and with so many big numbers 
that only recent electronic computers can solve its equations and pull some 
usable results out of it. 

But this is only the first step; as the initial structure calculated this way 
was only meant as a random sample--a shot in the dark, so to speak. Designers 
were expected to work on it and improve it, based on the results of the first veri-
fications they had carried out. And this is how they did it: again randomly, and 
blindly, they tweaked some aspects of the geometry of the shell and of the inter-
nal layout of the fibers; then they reran the FEA calculation on this second model, 
and so on: the process was repeated many times over, until the authors were 
pleased with the results. In this process of optimization by trial and error, every 
simulated model that was tested and discarded corresponds to a physical model 
that a traditional artisan--an artisan making a chair, for example--would have 
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made, tested, and likely broken in real life. Using digital simulations of structu-
ral performance, however, today we can make and break on the screen in a few 
hours more full-size trials than a traditional craftsman would have made and 
broken in a lifetime. Good artisans of old could learn from their trials, and errors, 
over time, and intuit some shortcuts, fixes, or strategies; and so could we today, 
theoretically, using computational simulation; but in fact even that is no longer 
necessary. As there is no limit to the number of trials we can run, we can simply 
keep making and breaking (in simulation) all possible variations, randomly, until 
at some point we shall find one that does not break; and that will be the good 
one.

One may object that even that may take too long, and of course we 
have a solution for that, too: instead of doing many trials ourselves, one by one, 
we have programs that will run many trials in a sequence, then will look for the 
best results in that sequence, sort them based on some parameters we have 
chosen, then restart from that, ad libitum atque ad infinitum. This is what some 
call gradient-based optimization, also known as machine learning, deep learning, 
artificial neural networks, etc.; all of which more or less derive from, or relate 
to, the theory of genetic (generative, evolutionary) algorithms that was develo-
ped by John Holland in the mid 1970s. From a more general point of view, howe-
ver, this is little more than massive, automated trial and error. No human would 
calculate anything that way, because it would take forever, by definition; and 
because it seems a bit dumb--but computers can do so many trials so fast, that, 
using advanced computation, massive trial and error becomes a viable compu-
tational strategy. In fact, that's the best computational strategy, because that's 
the only thing that computers really do. 

Evidently, this is a far cry from how a modern engineer would have 
designed that structure we started this--which is one reason why no modern 
engineer ever designed it. A modern engineer would have started with a set of 
formulas establishing causal relationships between loads, forms, and stresses in 
the structure. By the causality they express, these formulas interpret and pro-
vide some understanding of the physical phenomena they describe. 

But this is exactly what today's computers don't do. Computational 
optimization, as I described it, does not depend upon formulas, laws, or rules of 
causation: all validation comes from the authority of precedent--either real, or 
simulated. 

This is how computers today predict things that modern science can-
not calculate, and our mind cannot understand. In some cases, computers can 
already tell us what is going to happen, but they won't tell us why--because 
computers don't do that. Through computational form searching, we can already 
design new structures of unimaginable complexity. But precisely because it is 
unimaginable, this post-human complexity belies interpretation, and transcends 
the small-data logic of causality and determinism we have invented over time 
to simplify nature and convert it into reassuring, transparent, human-friendly 
models of causality. Why does one unimaginably complex structure stand up, 
and thousands very similar ones we just run through computational simulation 
don't? Who knows. Nobody knows it; least of all, its designers. And yet it does 
stands up; using digital simulations, we know in advance it will, which is why we 
can build it. 

Prediction without causation means prediction without explanation. 
Not long ago, this would have been seen as black magic--and people doing that 
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would have been burnt at the stake. Today, that is just the way computers wor-
k--and the way we must let them work, whether we like that or not, if we want 
to take advantage of their power. This is what I think we should call, at this 
point, a new kind of science. Would this be the second coming of the reactio-
nary post-modern science that po-mo thinkers envisaged one generation ago, 
driven by their own anti-modern ideologies and anti-technical furor, and which 
would now be vindicated, ironically, by a new technological revolution that none 
of them had seen coming? Or would this be a last chance for redemption that is 
unexpectedly being given to modern rationality--assuming that any of it be left? 
Time will tell. A digital Sturm und Drang may not be around the corner, but there 
is thunder on the horizon, as well as dawn. 


