
«Ciceroniana On Line» V, 2, 2021, 285-296

TODD COOK

WHAT WOULD CICERO WRITE? — EXAMINING CRITICAL
TEXTUAL DECISIONS WITH A LANGUAGE MODEL

Textual corruptions, ambiguous variations, and lacunae in manu-

scripts have been traditionally dealt with by using expert insight
and conjecture. Emending or refining a text is a challenge for bud-
ding and seasoned philologists alike, and most practitioners wel-
come a second opinion.

Recent developments in language modeling now allow users to pre-
dict the probability of different sentences and to predict missing words
more accurately than before. This new information and perspective can
be used to form judgments on novel textual emendations and to further
quantify existing historical editorial judgments. Additionally, this tech-
nology may be pedagogically useful for generating cloze test completion
exercises to calibrate a student’s Latin word sense for critical judgments.

This paper shows how classical scholars can use a transformer lan-
guage model to gain another perspective on critical textual decisions.
We will explain the importance of analyzing an author’s corpus, and
the impact of the Good-Turing theory of frequency estimation when
predicting missing words. These two components together will lead us
to two novel extrinsic metrics that users should employ to evaluate the
suitability of a language model for a particular author, and to under-
stand how many predictions for each missing word should be consid-
ered. We will also explain some of the current limitation of transformer
language models. The large corpus of Cicero provides us with an excel-
lent baseline to evaluate the quality of the predictions provided by a
general Latin language model.

1. About Language Models

A language model is a statistical learning model that has been trained

on words and sentences so that it is able to provide probabilities of

https://www.ojs.unito.it/index.php/COL/index

286 TODD COOK

words in context, and by extension it can predict a missing or masked
word. Language models have been around for many years in several
forms (Markov Chains; Word Embeddings such as Word2Vec and GloVe
and KenLM; N-gram probability tables, etc.) however, they all have had
problems working with more than a relatively small window of context,
usually 5 words. In contrast, transformer language model designs, have
achieved state-of-the-art performance on language modeling and
masked word prediction tasks by being able to use up to 509 to-
kens/words of a sentence’s context. This paper will focus on practical
applications of transformer models for classicists; for technical expla-
nations of the architecture and theoretical explanations as to why
transformer language models are able to make better predictions, see
the select bibliography1.

Recent work by Y. Assael, T. Sommerschield, and J. Prag2 has shown
the value of creating and applying a deep learning language model to
correct characters in Greek epigraphy. Their model uses a bi-directional
LSTM architecture to model and predict sequences of characters, where-
as in this paper we will examine the use of the transformer model archi-
tecture with its focus on whole words in the context of a single sentence.

Transformer language models for Latin have been recently developed
and released for general use, notably Latin-Bert3, which was trained us-
ing more post-classical Latin than classical Latin (today’s Latin Wikipe-
dia, OCR scans of 19th century scholarship, etc.). It was evaluated by
sampling similar texts, and it was published with general metrics.

While researching this paper, a transformer Latin language model
was created, Cicero-similis, using the texts of Cicero and other classical
authors, and we provide metrics specific to Cicero. We will now explain
how we formulated the metrics for evaluating this language model spe-
cifically for readers of Cicero.

2. Single Word Probabilities

In Cic. re p. 6, 32, the word animal is found in A, Q, PhD manuscripts,

and the word anima is found in the H^1 Macr. and codd. Tusc. manu-

1 BERT 2018.
2 Assael-Sommerschield-Prag 2019.
3 Bamman-Burns 2020.

 TEXTUAL DECISIONS WITH A LANGUAGE MODEL 287

scripts4. When faced with variant readings it can be valuable information
to know which phrasing is more likely to have been commonly used—
and a language model can help determine this.

In figure 1, we show how one can obtain the probability values of
two different words using the Python programming language. Although
we don’t want to burden readers with unnecessary technical details, this
example demonstrates important points: the code is readily available; the
commands are relatively straightforward; and the task can be easily done
by most computers.

Here are the steps taken in figure 1: Import libraries; load a language
model and its tokenizer; instantiate a FillMaskPipeline; mask the word
we want to predict in our sentence (note the use of the special `[MASK]`
token); predict; and find out where our two target words were predicted.

The FillMaskPipeline only provides single token predictions; to get
the probabilities of longer words composed of multiple subtokens, the
prediction process must be incrementally repeated.

>>> from transformers import BertForMaskedLM, AutoTokenizer, FillMaskPipeline
>>> tokenizer = AutoTokenizer.from_pretrained("cook/cicero-similis")
>>> model = BertForMaskedLM.from_pretrained("cook/cicero-similis")
>>> fill_mask = FillMaskPipeline(model=model, tokenizer=tokenizer)
>>> fill_mask.top_k = 100
>>> results = fill_mask("""inanimum est enim omne quod pulsu agitatur externo; quod autem est

[MASK], id motu cietur interiore et suo, nam haec est propria natura animi atque uis;
quae si est una ex omnibus quae sese moueat, neque nata certe est et aeterna est.""")
>>> predicted_token_ids = [datum[ˈtokenˈ] for datum in results]
>>> predicted_words = tokenizer.convert_ids_to_tokens(predicted_token_ids)
>>> animal_idx, anima_idx = predicted_words.index(ˈanimalˈ), predicted_words.index(ˈanimaˈ)
>>> print(f"Using partial sentence, `animal` predicted at index: {animal_idx}; `anima` at {anima_idx}")
 Using full sentence, `animal` predicted at index: 8; `anima` at 27

Figure 1. Script showing language model predicting probabilities for different words in context

Now with just a little bit of code the transformer language model tells

us how much more likely the word animal is than anima.
Often the likelihood given to a word can be correlated with how fre-

quently it appears in the training data. However, this is not true in this
case: in the training corpus the word anima appears with probability

4 Powell 2006.

288 TODD COOK

0.00016 and animal appears less often at 0.00005. A simpler language
model (such as one constructed of N-gram probabilities) tends to predict
words that are more common, whereas a good language model guesses
missing words by using all of the surrounding words to build a context
and form a prediction.

Every assessment by a language model needs to be assessed by a
critic using the context of many sentences surrounding the text in
question. When performing the fill-mask prediction task, while trans-
former models use all the tokens in a single sentence to build a context,
they can only consider a single sentence at a time (extending the con-
text used for predictions to multiple sentences is an area of ongoing re-
search). Additionally, the value of a sentence’s likelihood must be
weighed by editor’s view of how lectio difficilior potior applies to the
particular situation.

3. Lectio difficilior potior

The principle of lectio difficilior potior (“the more difficult reading

is the stronger one”) is a central, guiding principle of textual criti-
cism. Although language models can make impressive predictions,
and at times they appear to display Natural Language Understanding
(NLU), they cannot understand text; they can only suggest words that
try to complete a grammatical thought. A good language model most
often tends to predict words that are grammatical; this is because
most of the training data does not contain errors, but rather contains
grammatically correct statements. Informally, we might view a lan-
guage model like a scribe’s ear: during dictation a scribe may miss a
beat and he may be tempted to fill in according to what he thinks he
heard — and these second guesses are like the top predictions of a
language model. Ultimately, a critical editor — not a language model
— must decide, whether an easy word is appropriate given the sur-
rounding context, or perhaps the author was trying to make a point
with a more pithy, unusual word. Thus, when to apply lectio difficilior
potior is a personal critical judgment, and using a language model
may provide supplemental information that may be useful in catego-
rizing which options are less likely.

 TEXTUAL DECISIONS WITH A LANGUAGE MODEL 289

4. Sentence Probabilities

Often critical textual decisions need to be examined beyond the single

word level, and to help with these issues, a language model can be used
to determine which of two whole sentences is more probable.

To find the probability of a sentence: Mask each word in turn; predict
the missing token and accumulate the probabilities for each known to-
ken; multiple the probabilities to find the conditional probability of the
whole sentence (see table 1).

Sentence with Masked Token Probability of Missing Token

“[MASK] est ueritas ?” 0.00058710627490

“Quid [MASK] ueritas ?” 0.237660154700279

“Quid est [MASK] ?” 2.76185728580458E-05

“Quid est ueritas [MASK]” 0.00977017916738987

“Quid est veritas?” 3.7651029780095805e-11 or sum log
probabilities: -24.002660810659727

Table 1. Probabilities of individual tokens in context

(Due to numerical precision issues with products of probabilities, it

is common practice to use the summation of log probabilities when
calculating sentence probabilities). Note: unlike previous language
models, transformer and BERT models now typically include punctua-
tion and can predict punctuation — since it helps to build the context
of a sentence.

Calculating sentence probabilities allows us to move from individual
word probabilities to groups of words. In this manner, given a sentence
with variations due to word inversions (e.g. potest malum / malum potest
[Cic. Cato 4])5, it’s possible to determine which word inversion is more
likely. Of course, it’s up to the critic to decide which is more appropriate
given the author and the surrounding context. In fact, the critic must
supply a perspective on the extended context; unfortunately, currently,
BERT and transformer models can only predict masked words within a

5 Powell 2006.

290 TODD COOK

single sentence; providing the previous or following sentences do not
improve masked word prediction accuracy.

5. Evaluating a Language Model

There are two types of metrics for evaluating a language model, in-

trinsic and extrinsic. An intrinsic metric is one that can be answered by
the model and the training data. The most common intrinsic evaluation
of a language model is perplexity, which measures how well a model
learns to predict words in the training and test data. However, this val-
ue is only useful for machine learning engineers tuning a model or
comparing different model architectures on the same dataset; perplexi-
ty scores don’t offer any insights for classicists or lay users of a lan-
guage model, so we will omit the technical details here, but for a deep
explanation see Campagnola 2020.

An extrinsic evaluation of a model involves completing a task exter-
nal to the model’s training and test data, and most often we anticipate
scholars will want to predict missing words for a particular author, and
so we will now investigate and explain what data is necessary to support
and develop these metrics.

The performance of any language model will vary for different au-
thors, and it can even vary for different types of text from the same au-
thor. However, there are several measurements that can help provide ob-
jective metrics on a language model’s performance. Let’s frame the prob-
lem in practical terms:

If we found a new page of Cicero, how many new words should we expect to find?

This can encompass two types of new: as in never-seen-before in the
author’s corpus; and new as in new forms of inflections; words with
previous lemma usage.

For Cicero, the answer is three words out of every hundred. We de-
duce this by applying a statistical technique to the author’s corpus (see
table 2). The Good-Turing frequency estimation technique states: «The
probability of an unseen element is equivalent to the probability of ele-
ments seen only once»6.

6 https://en.wikipedia.org/wiki/Good%E2%80%93Turing_frequency_estimation.

 TEXTUAL DECISIONS WITH A LANGUAGE MODEL 291

Number of words seen once in Cicero: 34,608

Number of total words in Cicero corpus: 1,196,512

Probability of encountering a new word: 34608 / 1196512 = 0.0289

Table 2. Calculating Cicero’s propensity for using a new word (Good-Turing frequency estimation)

Thus in the corpus of Cicero, there’s a 3% chance of seeing a word
that only occurs once. Find one hundred new words of Cicero? Expect to
find three words never seen before. An alternative to the Good-Turing
frequency estimation principle is to fit a curve on the nearby values and
forecast a value for the next element, the count of unseen vocabulary
words (see table 3 and figure 2).

Cicero’s Unigram Frequencies

Number of Word
Occurrences

Count

7 1,572

6 2,018

5 2,622

4 3,936

3 6,095

2 11,858

1 34,608

New words,
previously unseen

(estimated by
curve fitting)
88,198

Table 3. Cicero’s unigram frequencies

292 TODD COOK

Estimating Cicero’s unseen words by curve fitting

Figure 2. Visualization of a power law curve fitting a projection Cicero’s unseen words

Using the tail of the distribution, we can fit a power law curve: Find

100 new words? Expect 7 to have never been seen. (We include power law
curve fitting calculations here to show that even with liberal assumptions
an upper-bound limit for new vocabulary words is quickly reached).

Regardless of which method one adopts to forecast the appearance of
hitherto unseen words, either way, the important takeaway for scholars is
that all models indicate we should expect to some percentage of previous-
ly unseen words to appear with any discovery of a new text, whether it is
a new manuscript page or merely attempting to predict a missing word.
By extension, when trying to predict missing words, or when trying to
choose alternates among variations of an existing text, we would expect
that some viable candidates are hitherto unseen in the author’s corpus.

Thus, in practical terms, if you use a language model to predict a
masked word for a text of Cicero, you should tolerate groups of results
that stay within this expected range of new terms. A language model is
performing well when it predicts words that are similar to the author’s

 TEXTUAL DECISIONS WITH A LANGUAGE MODEL 293

vocabulary, plus some margin for hitherto unseen words. A language
model that performs poorly merely predicts too many words that we
would not expect to see in the author even if a new page of work were
discovered. The quality of the predictions must be evaluated on a case-
by-case basis using the surrounding context and the editor’s good sense.

6. Model Training and Evaluations

During research for this paper, a transformer language model was

created, Cicero-similis, from Latin corpora (Tessera, Phi5, Patrologia Lati-
na) consisting of 121.7 million tokens, and composed of 1,231,979 distinct
tokens. The training texts were cleaned, regularized, lower cased, and
enclitics were pre-tokenized. The model was trained for five epochs us-
ing hyperparameters tuned for the hardware used.

The model was evaluated using Cicero’s sentences. First, the Tesserae
corpus of Cicero was tokenized into 44,142 sentences, then 2,500 sen-
tences were selected, with each sentence containing between 8 and 23
tokens. The reason for these size boundaries is that we wished that the
model (and eventual human test subjects) would have a reasonable
amount of context to use to make a prediction for the missing/masked
token. For each test sentence, a whole word was randomly chosen and
masked. Neither enclitics nor punctuation were allowed to be chosen as
masked token values.

These chosen test sentences were then removed from the training
corpus. Both datasets were inspected and no words became orphaned;
all of the test sentences contained vocabulary that was present in the
training data, but none of the test sentences appeared verbatim in the
training data.

After many training runs and parameter adjustments, test results
showed definitive trends: for 50% of the test sentences, the model was
able to predict the missing word within its top 10 guesses, and 20% of the
time, the correct word was the first prediction. Now, if these numbers
seem low, remember, to predict the correct word the language model
must choose from the 1,231,979 distinct words found in the training data.

As we have shown earlier, if we found a new page of Cicero (consist-
ing of a hundred words), we would expect to find three words we had
never seen before in his corpus; for the Cicero-similis language model,

294 TODD COOK

for 2,500 test sentences from the Cicero corpus, the model had a mean
OOV (out of vocabulary) threshold of 66 (standard deviation 61), and the
mean unseen word OOV threshold (3rd unseen word) occurred at the
138th prediction (standard deviation 90). In practical terms these metrics
imply that if a Cicero scholar wishes to examine 95% of the reasonable
predictions for a missing word, the scholar should consider the first 188
predictions of the model, and to view 99% of the reasonable predictions
the scholar should consider the first 249 predictions. One can examine
predictions beyond these thresholds, but the model becomes less and less
confident and begins suggesting more words outside of Cicero’s usage.
The OOV threshold and the OOV unseen word threshold metrics need to
be calculated for each author a language model is used on. The calcula-
tion of the metrics is straightforward, and they provide good guidelines
on how many predictions to consider and how much confidence to have
in those predictions.

All tests and tuning runs were done with the training and test data
held out. Yet, in one isolated experiment, when the test data was added
to the training data, performance only improved a little: the transformer
model generalize well, it does not merely memorize answers, rather it
gives us insight into what the word in the sentence should be, predicting
as if it were, a collective unconsciousness of the Latin language.

7. Conclusions

When consulting a Latin language model about a textual decision, it’s
important to understand how well the model performs for that particular
author. In this presentation, we have analyzed one language model (Cic-
ero-similis) and seen that the infilling or fill-mask completion task re-
turns the correct word 50% of the time in the top 10 for a test set of sen-
tences from the corpus of Cicero. Additionally we have shown that this
language model for Cicero has an OOV (out of vocabulary) threshold of
66 (mean) and the threshold for unseen vocabulary occurs after 138 pre-
dictions (mean). The first word OOV threshold value and the 3rd word
OOV threshold value give users a representation of how fast the model’s
performance degrades.

A scholar should evaluate the use of a language model for a particular
author using two metrics based on tests using sentences from the au-

 TEXTUAL DECISIONS WITH A LANGUAGE MODEL 295

thor’s corpus: 1. How well does the model perform on the fill-
mask/infilling task, 2. What is the OOV prediction threshold for those
test sentences — that is, when the model provides a list of predictions for
a missing word (in descending order of probability) how far down the
list does the first word appear which has never appeared in the author’s
corpus usage. The first metric tells the scholar how often the model is
right in the top ten predictions, and the second metric tells the scholar
how many predictions the model provides for an author before it wan-
ders into the territory of wholly unexpected words.

Areas of further research include establishing a human baseline for
the Latin fill-mask/infilling prediction task; training a model with an op-
timal sub-tokenization scheme; better regularization of the training data;
more data, etc. Further work is also planned to provide supporting code
to make using language models easier for classicists, and to better handle
multi-token predictions. The author of this paper is open to sharing the
code used to generate this language model and he is committed to help-
ing others be able to use and assess language models for scholarly and
pedagogical purposes.

While looking forward here, the author would like to look back and
thank Dr. Ermanno Malaspina for his comments and advice made during
a presentation of a draft of this paper about pursuing the lectio difficilior
potior aspect; and thanks to Dr. Kyle P. Johnson for his feedback and en-
couragement.

Overall, results will continue to improve with further research.
Nonetheless it is clear that these newer language models now demon-
strate the beginnings of Natural Language Understanding (NLU)
enough that the classical community should assess their value, use
and applications in earnest.

296 TODD COOK

Bibliography

Assael-Sommerschield-Prag 2019: Y. Assael, T. Sommerschield, J. Prag, Restoring

ancient text using deep learning: a case study on Greek epigraphy, October
2019, https://arxiv.org/abs/1910.06262.

Bamman-Burns 2020: D. Bamman, P.J. Burns, Latin BERT: A Contextual Lan-
guage Model for Classical Philology, 21 September 2020,
https://arxiv.org/abs/2009.10053.

BERT 2018: J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Pre-training of Deep
Bidirectional Transformers for Language Understanding, 11 October 2018,
https://arxiv.org/abs/1810.04805.

Campagnola 2020: C. Campagnola, Perplexity in Language Models, 2020,
https://chiaracampagnola.io/2020/05/17/perplexity-in-language-models

https://en.wikipedia.org/wiki/Good%E2%80%93Turing_frequency_estimation

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)

https://github.com/kpu/kenlm

Powell 2006: M. Tulli Ciceronis, De Re Publica, De Legibus, Cato Maior de
Senectute, Laelius de Amicitia, recognovit brevique adnotatione critica inst-
ruxit J.G.F. Powell, Oxford 2006.

Resources

Cicero-similis Latin language model, https://huggingface.co/cook/cicero-similis.

Classical Language Toolkit, http://cltk.org.

Patrologia Latina Latin corpus, https://github.com/OpenGreekAndLatin
/patrologia_latina-dev.

Supporting Notebooks, https://github.com/todd-cook/ML-You-Can-Use/tree/
master/probabilistic_language_modeling.

Tesserae Latin corpus, https://github.com/cltk/lat_text_tesserae.

https://github.com/todd-cook/ML-You-Can-Use/tree/master/probabilistic_language_modeling
https://github.com/todd-cook/ML-You-Can-Use/tree/master/probabilistic_language_modeling

