Definizione dei territori vascolari in immagini di perfusione miocardica ottenute con tecnologia basata su cadmio-zinco-telluride tramite integrazione di tomografia computerizzata coronarica

##plugins.themes.bootstrap3.article.main##

Luca Camoni
Roberto Rinaldi
Gloria Raponi

Abstract

Introduzione e scopo

La tecnologia basata sul cadmio-zinco-telluride (CZT), permette di migliorare sia la risoluzione spaziale che l'efficienza di conteggio. Scopo dello studio è valutare se i territori vascolari della arteria discendete anteriore (LAD), arteria circonflessa (LCx) e arteria coronarica destra (RCA), identificati tramite gamma-camera CZT, mantengano la corrispondenza anatomica con il modello a 17 segmenti standard sviluppato dalla American Heart Association (AHA).

Materiali e metodi

Un campione di 2418 scintigrafie miocardiche di perfusione (MPI) eseguite su CZT e di 935 tomografie computerizzate delle coronarie (CCT), eseguite nello stesso periodo, è stato retrospettivamente valutato.

L’assegnazione dei segmenti ai territori delle tre maggiori coronarie è stata effettuata mediante imaging ibrido MPI-CCT e valutata da due operatori esperti in cieco tra loro, creando un modello individualizzato a 17 segmenti.

L'accordo inter-osservatore è stato calcolato tramite K di Choen.

Risultati

680 segmenti sono stati analizzati in 40 pazienti. I due operatori che hanno valutato i segmenti hanno ottenuto un’elevata concordanza (>0.90). Complessivamente il 30% del campione (12/40) ha presentato varianti anatomiche legate ad una delle tre principali coronarie.

Un totale di 76/680 (11,2%) segmenti miocardici sono stati riassegnati ad altri territori vascolari nel modello individualizzato rispetto al modello standard AHA.

I segmenti sono stati così riassegnati: 4 segmenti da LCx a RCA, 21 segmenti da RCA segmenti a LCx, 40 segmenti da RCA a LAD e 11 segmenti da LCx alla LAD. I segmenti maggiormente riassegnati (39/76) sono stati i segmenti 9, 10 e 15, appartenenti alla parete inferiore e di spettanza alla RCA, sulla base delle assunzioni del modello AHA.

Conclusioni

L’integrazione dell’imaging di perfusione miocardica MPI-CZT e CCT consente un’accurata assegnazione della distribuzione vascolare.

I risultati ottenuti dimostrano che rispetto al modello AHA il territorio con maggiore estensione è la LAD, mentre RCA e LCx sono i segmenti con la più elevata varianza.

Downloads

I dati di download non sono ancora disponibili

##plugins.themes.bootstrap3.article.details##

Come citare
Camoni, L., Rinaldi, R., & Raponi, G. (2019). Definizione dei territori vascolari in immagini di perfusione miocardica ottenute con tecnologia basata su cadmio-zinco-telluride tramite integrazione di tomografia computerizzata coronarica. Journal of Biomedical Practitioners, 3(2). https://doi.org/10.13135/2532-7925/4101
Sezione
Articoli

Riferimenti bibliografici

[1] Roth GA, Abate D, Abate KH et al. Global, regional and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1736–88
[2] Adamson PD, Newby DE. Non-invasive imaging of the coronary arteries. Eur Heart J. 2019; 40(29):2444–54.
[3] Hachamovitch R, Hayes S, Friedman J et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol, 2003;41:1329–40
[4] Hachamovitch R, Rozanski A, Hayes SW, et al. Predicting therapeutic benefit from myocardial revascularization procedures: Are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol. 2006;13:768–78
[5] Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002; 105:539–542.
[6] Angelini P, Flamm SD. Newer concepts for imaging anomalous aortic origin of the coronary arteries in adults. Catheter Cardiovasc Interv 2007; 69:942–54.
[7] Perez-Pomares JM, de la Pompa JL, Franco D, et al. Congenital coronary artery anomalies: a bridge from em-bryology to anatomy and pathophysiology. A position statement of the development, anatomy, and pathology ESC Working Group. Cardiovasc Res 2016; 109:204–16.
[8] Davis JA, Cecchin F, Jones TK, et al. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 2001; 37:593–7.
[9] Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation 2007; 115:1296–305.
[10] Basso C, Maron BJ, Corrado D, et al. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol 2000; 35:1493–501.
[11] Agostini D, Marie PY, Ben-Haim S et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging (2016) 43: 2423.
[12] Gimelli A, Bottai M, Giorgetti A et al. Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: A pilot study. Circ Cardiovasc Imaging 2011; 4:51-8.
[13] Gimelli A, Bottai M, Genovesi D et al. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultra-fast detectors: preliminary clinical results. Eur J Nucl Med Mol Imaging 2012; 39:83-90.
[14] Javadi MS, Lautamaki R, Merrill J et al. Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med 2010; 51:198–203.
[15] Ortiz-Perez JT, Rodriguez J, Meyers SN et al. Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2008; 1:282–293.
[16] Pereztol-Valdes O, Candell-Riera J, Santana-Boado C et al. Correspondence between left ventricular 17 myo-cardial segments and coronary arteries. Eur Heart J 2005; 26:2637–43.
[17] Donato P, Coelho P, Santos C et al. Correspondence between left ventricular 17 myocardial segments and coro-nary anatomy obtained by multi-detector computed tomography: an ex vivo contribution. Surg Radiol Anat. 2012 Nov; 34(9):805-10.
[18] De Luca L, Bovenzi F, Rubini D et al. Stress-rest myocardial perfusion SPECT for functional assessment of coro-nary arteries with anomalous origin or course. J Nucl Med 2004; 45:532–6.
[19] Uebleis C, Groebner M, von Ziegler F et al. Combined anatomical and functional imaging using coronary CT an-giography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery. Int J Cardiovasc Imaging 2012; 28:1763–74.
[20] Grani C, Benz DC, Schmied C et al. Hybrid CCTA/SPECT myocardial perfusion imaging findings in patients with anomalous origin of coronary arteries from the opposite sinus and suspected concomitant coronary artery dis-ease. J Nucl Cardiol 2017; 24:226–34.
[21] Grani C, Benz DC, Possner M, et al. Fusedcardiac hybrid imaging with coronary computed tomography angi-ography and positron emission tomography in patients with complex coronary artery anomalies. Congenit Heart Dis 2017; 12:49–57.
[22] Miyagawa M, Nishiyama Y, Uetani T et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol. 2017; 244:347-53.
[23] Nkoulou R, Fuchs TA, Pazhenkottil AP et al. Absolute Myocardial BloodFlow and Flow Reserve Assessed by Gat-ed SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. J NuclMed. 2016;57(12):1887-92
[24] Agostini D, Roule V, Nganoa C et al. First validation of myocardial flow reserve assessed by dynamic (99m) Tc-sestamibi CZT-SPECT camera: head to head comparison with (15)O-water PET and fractional flow reserve in pa-tients with suspected coronary artery disease.The WATERDAY study. Eur J Nucl Med Mol Imaging. 2018; 45(7):1079-90.
[25] Zavadovsky KV, Mochula AV, Boshchenko AA, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol. 2019 Mar 7. doi: 10.1007/s12350-019-01678-z.